SPAR Lab

MECHANICAL AND ELECTROCHEMICAL BEHAVIOR OF ENAMEL-COATED STEEL BARS IN CONCRETE

• Vitreous enamel, a material made by fusing powdered glass to a metal substrate by firing, usually between 750 and 850 °C. It has many advantages:

- Chemically adhere with substrate steel,
- Work as a barrier layer to prevent chloride diffusion,

Double ename

- Behave as physical and chemical inertia, and
- Modify properties by addition of different oxides.

Corrosion Resistance

To investigate long-term corrosion resistance of steel bars embedded in mortar cylinder and immersed in 3.5 wt.% NaCl solution.

Evolution of corrosion current

- 1) Addition of CS particles changes the microstructure of enamel coating.
- 2) Enamel coating increases the corrosion
- resistance of steel bars in long term.
 Pure enamel and double enamel coatings are better than mixed enamel coating.

Blast Resistance

bond behavior can prevent concrete debris from

To investigate how improved steel-concrete

becoming shrapnel during explosion events.

Specimen preparation

 Strong bond between enamel-coated steel rebar and concrete results in few cracks on the front and back faces.

- Strains measured on enamel-coated rebar are larger than those on uncoated rebar.
- Under 45-lb charge, the enamel-coated rebar remains to be anchored into the wall base while the uncoated rebar completely disappears.

<figure>

Bond Strength

To optimize steel-concrete bond strength with

various enamels and understand their interface

behavior mechanically and chemically.

Pull-out failure modes

1000 S0/20

MISSOUR

- 1) Enamel coating increases the bond strength of steel rods with surrounding concrete.
- The increased bond strength results from increased
- surface roughness and adhesive.) The chemical bond changes the failure modes.

Potential Applications of Enamel Coating in Civil Infrastructure

- Building and bridges in marine environment or subjected to de-icing salt
- Barrier wall for car-bomb attack
- Transmission and distribution pipelines for oil, natural gas, or hazardous liquid transportation

Sponsored by: Army Research Laboratory, National Science Foundation, Missouri Department of Transportation, and CTIS University Transportation Center.

Contact: Genda Chen, Ph.D., P.E., SPAR Lab Director, Phone: (573) 341-4462, Email: gchen@mst.edu